
International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

Problem Tutorial: “Awesome Shawarma”
Problem:

Given a tree, find the number of nodes after connecting them, the number of overall bridges will be
between L and R.

Prerequisites: DSU on tree, Binary Indexed Tree(BIT)

Explanation:

Let’s define some term dist between two nodes, dist(a, b) is the number of edges in the path between node
a and b.

In any tree, all the edges are bridges initially , so there is n− 1 bridges and when we connect node a and
b with an edge, we can see that the new graph will have cycle, and the number of bridges that remains
after the connection is n− 1− dist(a, b).

We have:

L ≤ n− 1− dist(a, b) ≤ R ⇒ (Subtract by n− 1)

L− n+ 1 ≤ −dist(a, b) ≤ R− n+ 1 ⇒ (Multiply by −1)

n− 1−R ≤ dist(a, b) ≤ n− 1− L

So the problem can be converted to finding the number of nodes the a and b that the distance between
them is between n− 1− R and n− 1− L and if we managed to create function solve(X) that will take
X as input and will output the number of nodes that the distance between them are less or equal to X,
so our answer for the problem will be:

solve(n− 1− L) - solve(n− 1−R− 1)

How to create the solve function?

This problem can be solved using multiple ways, we will discuss "DSU on tree"approach: Please refer to
this link for better understanding to "DSU on tree": http://codeforces.com/blog/entry/44351

Let’s root the tree with the node number 1 and define dep[u] to be dist(1, u), i.e the number of edges
between the root and u (the depth of node u in the tree). After calculating the dep array, we can define
the dist term as: dist(a, b) = dep[a] + dep[b] - 2 * dep[LCA(a, b)] where LCA(a, b) is the lowest common
ancestor of a and b.

Now suppose we have some node base, we will call the big subtree of base with heavy and the other
subtrees as light, and let’s create Binary Indexed Tree, where its indices are the depth, and the value will
be number of nodes having that depth.

If we have node base and its heavy subtree, and light subtrees, we will follow these steps:

1 - store all depths of the heavy subtree in the BIT data structure.

2 - For every light subtree:

• a. Query result for every node in that subtree.

• b. Add every node depth to the BIT.

step (a) can be calculated as:

loop through all light subtree nodes u, we need to know the number of nodes v that are stored in the
BIT and the dist(u, v) ≤ X, so:

dep[u] + dep[v] - 2 * dep[LCA(u, v)] ≤ X

but we know that the LCA(u, v) is base (because u and v are in the subtree of base and in different
subtrees), so:

dep[u] + dep[v] - 2 * dep[base] ≤ X ⇒
dep[v] ≤ X + 2 * dep[base] - dep[u]

Page 1 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

In other words, we need to find the number of nodes that the depth is less or equal to X + 2 * dep[base]
- dep[u], and it can be calculated using BIT.

step (b) is required to calculate the distance between light subtrees between each other, not only with
heavy subtree.

Don’t forget to calculate the answer between base and all its subtrees.

The orange is base node, red is heavy and green is light subtree, so we calculate the answer between
green nodes and red nodes, and after calculating the answer between them, we add the green nodes to
the BIT.

We calculate the answer between green nodes and red nodes, and after calculating the answer between
them, we add the green nodes to the BIT, and at the last step, we calculate the answer between base
and all nodes in its subtree.

Complexity:

• Calculating dep array can be done in O(N)

• Looping through light and heavy nodes using DSU on tree can be done in O(NLog(N))

• Query and update using BIT can be done in O(Log(N))

Page 2 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

So the total complexity is: O(N.log2(N))

Challenge:

Solve the problem in O(N.log(N)) using "DSU on tree".

Problem Tutorial: “Baklava Tray”
We can phrase the problem as "Given an infinite sequence of n-sided polygons, each is formed by joining
the midpoints of the sides of the latest drawn polygon, and a point is thrown inside, find the expected
value of the number of polygons that contain it". Once we solve that problem, we would just need to
multiply the answer by 104 to count for each fork in the original problem statement.

We will discuss the main idea of the solution. First, we should notice that each time the area of the
newly formed polygon will decrease by a factor of α, strictly speaking, the formed polygons will have the
following areas : 1, 1/α, /α2, 1/α3, ..., 1/(α∞)

Let’s denote the area of the ith consructed polygon as Ai , a point has a probability Ai/A0 = α−i of
ending up in the ith polygon, so our answer reduces to calculating

∑∞
i=0Ai/A0 =

∑∞
i=0 α

−i = 1
1−α

This sum can be calculated using geometric series in O(1). In fact, a for loop that is done carefully up to
enough limits, this doesn’t use too much time and still yields enough precision that will pass.

In order to calculate the α stated earlier, there are two ways, one is by simulating the first step and
calculate the ratios. The second way is by deriving a formula, we triangulate the ith polygon into n
triangles, where each triangle has two sides of side-length Ri and an angle 2π/n in between, then the area
of the corresponding polygon by the sine-rule is R2

i sin(2π/n) ·n/2. After that, if we draw a line joining the
mid-point of the third side and the intersection of the first two sides, we will find that this is an isosceles
triangle, and thus this new line is perpendicular to the third side. Using this fact, we can calculate the
side-lengths Ri+1 of the of the smaller polygon using the formula Ri+1 =

√
R2

i − (x/2)2 where x is the

side-length of the third side, which can be calculated with the cosine-rule x = Ri

√
2− 2 · cos(2π/n). The

final formula is R2
i+1 = R2

i (1+cos(2π/n))/2, and if we are to multiply both sides by sin(2π/n)·n/2, we will
find that the areas are given by Ai+1 = Ai ·(1+cos(2π/n))/2, and thus α = (1+cos(2π/n))/2 = sin2(π/n)
.

Here’s a short solution: 2 · 104/(1− cos(2π/n)) = 104/ sin2(π/n) = (102/ sin(π/n))2

Challenge: if n is larger than 103, do you think your code would still have enough precision?

Problem Tutorial: “Coffee”
This is a direct implementation easy problem, all you need to do is to save for each drink its price with
the three sizes and then calculate the total cost for each person independently as it is guaranteed that
the drinks and persons are unique.

Problem Tutorial: “Dull Chocolates”
The idea to solving this problem is noticing that while the grid is very large, the number of chocolates
can at most be 1000. Let’s assume our grid can only be up to 1000× 1000, in this case the problem would
be easy to solve as we can formulate it a direct 2D Sum on a grid. In other words, we maintain a 2D sum
of all chocolates, then brute force every end point of the grid, and counting if it’s odd or even.

However, since N and M can be up to 109 each, the above approach would certainly not pass, instead we
can utilize a technique known as grid compression, which can be thought of as a variation of co-ordinate
compression. Let’s compress all points in ascending order starting from 1 independently for each dimension
of the grid. For example, if we have 2 chocolates as (102, 103), (102+4, 103+4), they would be compressed
as (1, 1), (2, 2) . We should also be able to find a given original chocolate given it’s compressed value.

Once the compression is done, and since we can have at most 103 chocolates, they would all fit in a
103 × 103 grid, however if we apply the regular approach of brute forcing every end point, we would

Page 3 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

undercount the answer since end points that didn’t appear as chocolates will not be counted, but notice
that the answer for a given fixed point on which a chocolate lie is the same till the first point before
it on each respective dimension where a chocolate appeared, so we can just multiply by the difference
of of dimensions. More technically speaking, if (x2, y2) is a compressed chocolate point, it’s contribution
depending on parity would be, (Original position of (x2) in the grid - original position of (x2 − 1) in the
grid) × (Original position of (y2) in the grid - original position of (y2−1) in the grid). You should account
for special cases, where an earlier chocolate did not appear.

Grid compression can be implemented in variety of ways, one for example is putting all entries in a sorted
map, then re-iterating over it, and assigning values in an increasing order.

The complexity of this solution is O(N ·M · log(N ∗M))

Problem Tutorial: “Exciting Menus”
First of all, we need to notice that although we are looking for a substring, this substring must match a
prefix of some of the given strings, because if it is not a prefix the popularity part will be zero. So let’s
insert all the given strings in a ‘Trie’ and after that, each node of this trie will represent a prefix of one
or more of the given strings. The depth of each node will represent its length and the number of strings
in which this node is a prefix corresponds to the number of times you passed by this node while inserting
the strings, this will be stored in the node as the value cnt. So for each node lets keep track of two values
(cnt : max) where cnt is the popularity of this node and max is the maximum value of Ai

k of all substrings
matching the prefix ended at this node. Using this definition, the problem would be just to compute for
each node u the value depth(u) · cnt(u) ·max(u), and return the maximum of all of those. The values cnt
and depth are not hard to compute, however the value max is tricky, initially while inserting the strings
let’s set the max value of a node by the maximum possible value of Ai1

k , · · ·A
ir
k corresponding to all the

prefixes of this node, for better understating see the following figure representing a trie after inserting
some strings in it.

Please note that the max value of some nodes are not final e.g nodes corresponding to ‘a’, and ‘aa’
their max values should be 3 but currently they are not (take a moment to figure out why it should
be 3). So what should we do next? First, you should note that all substrings to be chosen Si

j,k are
also suffixes of the prefix Si

k (with node u), so in other words, we are looking for a prefix Si
k (with a

corresponding Ai
k) and a corresponding suffix of that Si

j,k which is another prefix with node v so we can
get |Si

j,k| · popularity(Si
j,k) · Ai

k, this corresponds to depth(v) · popularity(v) ·max(u). Therefore given a
node v, we should update the max value of all the suffix nodes u by max(u) := max(max(u),max(v)).
The question is how to precompute these updates efficiently. If we recall the ‘Aho-Corasick algorithm’, we
will find out that the relation between u and v is that u will reach v using some fail-links (also known as

Page 4 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

suffix-links), because the fail-links are defined as the maximum suffix of a given prefix that also matches
a prefix in the Trie, which is exactly what we are looking for. Knowing this, we will find that the relation
between v, u is that u = failk(v) for some k. If we use the ‘Aho-Corasick algorithm’ to build the fail links,
and after creating these links our trie should look like this:

Note that the nodes with no outgoing suffix-link will fail to the root node by default.

After that each node should maximize between its current max value and max values of all nodes that
reach it through some sequence of suffix links, thus we can compute this using BFS from the bottom
nodes to top nodes (the BFS needs to take care of processing all nodes with higher depths before nodes of
lower depths, to update the max values in the correct order and not missing correct updates), and update
the max value of all nodes by max value of the parent in the BFS (that arrived using some suffix-link).
Thus we arrive at the final max values of the nodes, and the Trie with the final values of max should be
like this:

After knowing the depth, cnt and the final max values of each node calculating the answer will be
maxu depth(u) · cnt(u) ·max(u) for all nodes u.

In the above example, the node ‘aa’ is the node with maximum answer 18, where i = 1, j = 3, k = 4,
because A1

4 = 3, and then j is determined by the suffix-link going to the node ‘aa’ with depth 2 and
popularity 3.

Problem Tutorial: “Flipping El-fetiera”
Let’s denote our matrix as T . We are essentially trying to calculate the expected value of ones in the

Page 5 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

matrix after K steps, which is E(T0,0, T0,1, · · · , Ti,j , · · · , TN−1,N−1) ∀i, j < N

By the linearity of expectation property, E(T0,0, T0,1, · · · , Ti,j , · · · , TN−1,N−1) is equal to the sum
E(T0,0) + E(T0,1) + · · · + E(Ti,j) + ... + E(TN−1,N−1), so our problem reduces to calculating for each
individual bit the expected value after K steps, and summing all of these. More formally, we would like
to calculate

∑N
i=1

∑N
j=1 E(i, j) where E(i, j) represents the expected value of the cell (i, j) after K steps.

The probability pi,j of flipping a fixed bit is (number of matrices that can contain the bit) / (all possible
matrices), which is :

pi,j =
((i+ 1) · (j + 1) · (N − i) · (N − j))∑N−1

i=0

∑N−1
j=0 (N − i) · (N − j)

Once that is fixed we can compute the expected value of a single cell after K steps using various ways,
one of them is using dynamic programming, by having dp[k][s] represent that the current bit is s after k
steps. We can formulate the recurrence as dp[k][s] = (1 − pi,j) · dp[k − 1][s] + pi,j · dp[k − 1][1 − s]. The
complexity will be O(N2 ·K).

Alternative solution:

Let’s define a point-wise binary operator ⊙ that takes as input a matrix, and a given mask of a sub-matrix
to flip. The operator should simulate the flipping operation for the given matrix. If we define the matrix
as A, and a mask of a sub-matrix as M , then the operator can be defined as :

Ri,j = Ai,j · (1−Mi,j) +Mi,j · (1−Ai,j) = Ai,j +Mi,j · (1− 2 ·Ai,j)

It can be thought as taking Ai,j with the complement Mi,j or the flipped Ai,j with Mi,j . It can be shown
also that the operator is associative.

The solution to the problem is simulating all masks for K steps, and then averaging them. (Dividing them
by total number of masks).

Let’s assume our matrix is X, and our masks are a, b, c and d then our simulation for one step assuming
the operator is distributive is

X ⊙ a+X ⊙ b+X ⊙ c+X ⊙ d

4
= X ⊙ (a+ b+ c+ d)

4

If we apply the operation for another step we get:

X ⊙ (a+ b+ c+ d)

4
⊙ (a+ b+ c+ d)

4

which is equivalent to: (as the operator is associative)

X ⊙ (aa+ ab+ ac+ ad+ ba+ bb+ bc+ bd+ ca+ cb+ cc+ cd+ da+ db+ dc+ dd)

16

In another words, the solution is contributions of all combinations of all possible masks for K times
divided by the total number of possible combinations of all masks.. How can we calculate the answer for
K times? We effectively want to calculate the kth power under the given defined operation, which can be
done by binary exponentiation (as the operator is associative) similar to normal mod power, but instead
replacing the × operator, by our defined one ⊙. Let B be our initial matrix which contain the values for
a single step, as in the contribution of possible masks divided by the count of all possible masks, we are
effectively trying to calculate B ⊙B ⊙B ⊙ · · · ⊙B for K times which is BK . Once BK is calculated, our
answer to the problem is summing the cells of the resulting matrix of X ⊙ BK , where X is our original
matrix. The complexity will be O(N2 · log(K)).

As for B1, it can be calculated as follows :

Bi,j =
((i+ 1) · (j + 1) · (N − i) · (N − j))∑N−1

i=0

∑N−1
j=0 (N − i) · (N − j)

Page 6 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

It can be thought of as fixing a point for each dimension independently, and choosing two points to contain
it, one before (or equal) it, and another after (or equal) it.

We are normalizing by all possible masks in this step because doing so would allow us to prove distributivity
of the operator. To prove distributivity, we need to prove that

p⊙ (

R∑
i=1

qi
R
) =

1

R

R∑
i=1

p⊙ qi

p⊙ (

R∑
i=1

qi
R
) = (p+(

R∑
i=1

qi
R
) · (1−2p)) =

1

R
(R ·p+

R∑
i=1

qi · (1−2p)) =
1

R

R∑
i=1

(p+qi · (1−2p)) =
1

R

R∑
i=1

p⊙qi

Problem Tutorial: “Greatest Chicken Dish”
This queries of this problem will be solved offline, but first, we define some needed terminologies and then
we show the main processing to solve it. Later we mention some details related to the side tasks to be
made.

First of all, if we define a contribution array C such that CL counts how many indices k ≥ i satisfy a
condition, here CL will be the number of start points i ≥ L that have j ≥ i such that gcd(Ai, · · · , Aj) = d
for a fixed value d. In order to answer a query (d,R, L), we can process all possible contributions of points
j ≤ R with a fixed GCD value d, then we would just output CL, because the contributions only include
points with GCD value d, endpoints j ≤ R and CL answers for all i ≥ L, which is exactly what the query
is asking for. Consequently, we need to maintain a contribution array that computes only the necessary
values and then answer all the queries related to these values, then efficiently update the contributions,
then answer and so on, until all contributions are processed or all queries are answered.

In order to compute the contributions, we first consider if we fix some endpoint j of a range, and then
we move the start point i from j until the start index 1, and at each point we calculate the GCD of the
range between i and j, we will find that there are O(logM) distinct GCD values, because as i moves, the
GCD either stays the same or decreases by dividing by one of its divisors (factor more than 1), and there
are at most O(logM) such divisors. Knowing this, we can hence define a quadruple (d, j, i1, i2), where j
is the fixed end point, and [i1, i2] defines a range of all possible start points i, such that the GCD of all
values in the range [i, j] is exactly equal to d.

There are at most O(N logM) such quadruples, these can be easily found by trying all possible endpoints
j, and then for each start point i1 we have, we can compute the one before it using binary search (to find
the latest start point x that makes the gcd(Ax, · · · , Aj) < gcd(Ai1 , · · · , Aj), this would generate the new
quadruple (d, j, x, i1 − 1), then use x as i1 to get the earlier one and so on. The quadruples will be found
in O(N logN log2M) time complexity, because each quadruple needs a binary search that computes a
gcd operation at each step which costs O(logN logM) time complexity. What remains is to use these
quadruples to properly define compute the contributions defined at the beginning.

A small example, as a demonstration of the quadruples, if we are given an initial array
[1, 1, 2, 22, 44, 11, 121, 19], then the fixed endpoint 7 (A7 = 121), has the quadruples (121, 7, 7, 7),
(11, 7, 4, 6) and (1, 7, 1, 3). If we fix only consider the quadruple (11, 7, 4, 6), we will find that this adds
to the contribution array the following values [3, 3, 3, 3, 2, 1, 0, 0] because the only start points are 4, 5, 6,
therefore the start points after indices 1, 2, 3, 4 are the same three points, and from index 5 there are
only two points, and so on. We can generalize this in order to update the contributions if we have a
quadruple (d, j, i1, i2), then we can update the range [1, i1 − 1] by incrementing all its values by a fixed
value i2 − i1 + 1, namely the size of the possible starts range, in addition to making a descending-update
to the range [i1, i2], by adding the values i2 − i1 +1, i2 − i1, · · · , 1 to the contribution values. This will be
achieved using a segment tree with lazy propagation (will be shown how, later)

Finally, We need to group the queries and quadruples by GCD values, this can be achieved when the
quadruples and the queries are sorted lexicographically by GCD value then by endpoint, then the offline

Page 7 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

algorithm for answering queries would act something similar to the merge function in the merge-sort
algorithm, by maintaining two pointers one for quadruples and one for queries. Before answering a query,
the quadruples pointer will move to make sure that we processed (updated the contributions) of all
quadruples with the same fixed GCD value as the query, and that only quadruples with end values j ≤ R
are processed, as stated by the early algorithm, then the query pointer is moved to answer the next query
and so on. The contributions will get reset in between when the GCD values change.

Summing up all of this together, we can come with the main algorithm:

1. Precompute a sparse array of GCD values.

2. Compute all quadruples.

3. Sort queries and quadruples lexicographically by GCD value, then endpoint.

4. Initialize pointer quadruple_idx

5. For query_idx in 1, · · · , Q

(a) While quadruples have different GCD then the queries ⇒ reset contributions

(b) While quadruples have the same GCD and end index not greater than the query end index ⇒
process the quadruple using a descending-update and normal update operations.

(c) Compute the query’s answer by querying the contribution CL

(d) If there is no next query or the next query has different GCD from the last processed quadruple
⇒ reset contributions

The time complexity is O(N log2M logN + Q logQ) per test case, where the most intensive part is to
compute the quadruples in O(N log2M logN) and sorting them and the queries.

Finally, we mention quickly how the segment tree queries are processed in a way that supports the
descending-update. Each node will store three values sum, toadd, toadd_dec, where sum is the actually
processed sum of the node, toadd is the lazy variable showing what is the value needed to be added to
the range (standard range-sum), and toadd_dec is the lazy variable counting how many times we need to
make the descending-update to this node. There is an additional lazy flag for resetting the node.

The key idea is to realize that we can make the descending-update with an offset x for a node with the
range [a, b], meaning that we add the values [x+ b− a+1, · · · , x+2, x+1] to the range. Then, In order
to descendingly-update the two children nodes with ranges [a, c] and [c+ 1, b], we then make descending-
update on the left node with offset x + b − c and on the right node with the offset x. However, the
descending-update with an offset x on some node can be dissolved into two updates, namely descending-
update with offset 0 and a standard range-sum update of value x.

Eventually, the propagation of the lazy variables needs a summary update to the value sum, this can be
acheived by the formula

sum := sum+ toadd_dec · (siz − 1) · siz
2

+ toadd · siz

because of the triangular sum toadd_dec · (1 + 2 + · · · + siz) = toadd_dec · (siz−1)·siz
2 and the constant

value sum toadd · siz. After that the toadd_dec is propagated as is to the children, and the left node’s
lazy value toadd is updated by toadd_dec · right.siz because of the additional offset.

Problem Tutorial: “Hawawshi Decryption”
First of all, the range [A,B] is small, so we can try all possible value of R0 in this range, in each of these
tries we need to compute if Rn = X will be the case for some n such that n < N (checking the smallest
such n is sufficient). The baseline solution would try all the elements of the sequence, but this would
time out because it has a time complexity O(|B −A|p) per test case, therefore we need to look on fewer

Page 8 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

elements of the sequence to achieve a faster solution. The main task would then be: given R0, we need to
solve for the smallest n such that Rn = X.

To solve this new reduction, we introduce Sn such that Sn = Rn−v and Sn = aSn−1, then by substituting
in the pseudo-random generator, we can get that v = av + b hence v(1 − a) = b. We can then conclude,
if such v exists, that Sn = an · S0 which implies Rn = an(R0 − v) + v where v = b(1− a)−1; such v exists
only if a ̸= 1, otherwise if a = 1, then this needs to be handled differently, we find in that case that Rn is
an arithmetic sequence, such that Rn = R0 + nb.

In order to find the smallest n such that Rn = X, we handle three cases. In case if a = 1, then
we can solve n = (X − R0)b

−1 as a special case. Otherwise, in the second case we use the other
equation, an = (X − v)(R0 − v)−1 to solve for n, this is done using the discrete logarithm. However,
there’s an additional third (special) case needs to be handled, if R0 = v (in such case (R0 − v)−1

is not defined), then by definition of R1 and the equation of v = av + b above, we can deduce that
R1 = aR0 + b = av + b = v = R0, which means that the sequence is a fixed point (that Ri = R0 for all
i). The solution of this second special case, is either n = 0 if R0 = Rn = X or no solution if X ̸= R0.

The discrete logarithm intended was the baby step giant step algorithm, which operates in time complexity
O(

√
p), so the overall time complexity is O(|B −A|√p) per test case, using a hash/unordered map. The

implementation needs to take care of finding the smallest solution of n.

======

Another solution, whose idea was proposed by the winning team (rephrased by the author), is to define
an operator ⊙ over the set Zp×Zp, the operator is defined by (x, y)⊙ (a, b) = (ax mod p, ay+b mod p),
with an identity element (1, 0). This operator can be shown to be associative as well, so we can easily
make power operations without special handling. Additionally a function f : Zp × Zp → Zp is defined by
f((x, y)) = (xR0 + y) mod p.

The choice of this operator particularly simulates the linear recurrence, this can be shown by induction
by proving that f((a, b)n) = f((a, b) ⊙ · · · ⊙ (a, b)) = Rn. The induction basis n = 0 is proved using the
identity element (since (a, b)0 = (1, 0) by definition) by applying the definition f((1, 0)) = 1 ·R0+0 = R0.
The induction hypothesis assumed is f((a, b)n) = Rn means that (xnR0 + yn) mod p = Rn where
(xn, yn) = (a, b)n. The induction step is then proved using:

f((a, b)n+1) = f((xn, yn)⊙ (a, b)) = f((xna mod p, (yna+ b) mod p))

then this can be reduced to:

f((a, b)n+1) = (xnaR0 + yna+ b) mod p = (a(xnR0 + yn) + b) mod p = (aRn + b) mod p = Rn+1

Using this proved proposition, we can restate the problem as solving for n for the equation
f((a, b)n) = Rn = X, this can be done using the baby step giant step directly without handling any special
cases. The main difference here is that the identity element is (1, 0) instead of 1 and the multiplication
operator is the newly defined operator. Also, the operator is associative which is an implicit assumption
made by the baby step giant step algorithm, because of the operation assuming axy = (ax)y. This solution
has the same time complexity O(|B −A|√p) per test case.

Problem Tutorial: “Ice-cream Knapsack”
First let’s try to find what is the minimum number of calories we can achieve, clearly it’s the caloric
number of the Kth item in the list when sorted in ascending order by caloric value. Let’s denote the
minimal number of calories we can achieve as P . Once that is fixed, let’s put the happy values of all
elements with calories ≤ P in a maximum heap, and greedily pop the first K values. The sum of these K
values is the maximum total happiness we can achieve.

Problem Tutorial: “Journey to Jupiter”
One of the main difficulties of this problem is just that it is 3d-geometry, however, once it’s imagined the
solution should come by relatively easily by using some geometrical definitions.

Page 9 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

If we assume that the points A,B,C are the new points after the plane’s rotation, then we can deduce
that they all lie in the same plane whose normal vector is the given vector N. Using the two alternatives
equations of the vector (cross) product, we can then deduce that:

A×B = (AxBy −AyBx, AzBx −AxBz, AyBz −AzBy) = |A||B| sin(θAB)
N
|N|

= (|A||B| sin(θAB)
Nx

|N|
, |A||B| sin(θAB)

Nx

|N|
, |A||B| sin(θAB)

Nx

|N|
)

This gives three equations in the three unknowns Bx, By, Bz, however, we can’t use all the three to solve
for the point B because the three equations are linearly dependent (hence, they don’t have a unique
solution), this can be shown by observing the rank of the Gauss-Jordan reduction of the equations, or
by Cramer’s rule. Picking any two of these will be linearly independent though. Any two equations are
linearly independent because of the given constraint Ax, Ay, Az ̸= 0, otherwise the two chosen equations
needed to be picked up carefully.

Additionally, by using the two alternative equations of the dot product:

A⊙B = AxBx +AyBy +AzBz = |A||B| cos(θAB)

We get the third linearly independent equation in the three unknowns Bx, By, Bz. The same operation
can be repeated for the point C by replacing B by C. Since the three points form an equilateral triangle,
we can deduce that θAB = −θAC = 2π

3 and |A| = |B| = |C| = L√
3
.

The equations can be solved using Cramer’s rule of Gauss-Jordan elimination. The main solution used
Cramer’s rule, by expanding the determinants using the (O(n!)) definition since n = 3 here.

====

Rotation matrix solution :

The spacecraft can only rotate along its principal axis : Yaw (u⃗ axis), pitch (v⃗ axis) and roll (w⃗ axis).
Let’s decompose the movement into three independent phases :

In the first phase the simulator rotates along the yaw axis by θ. The triangle stays in the (XY) Plane but
the tree points were rotated by theta, let’s call the corresponding new points A’ B’ C’.

The second phase is the rotation along the pitch axis (Transverse Axis) by ϕ. The triangle is no longer
in the XY axis and the three points rotate again. The new points are A”, B” and C” where A” is given as
input.

The last phase is a rotation along the roll axis (longitudinal axis) by ψ. In this phase only B” and C” will
rotate.

If a,b,c are the new points corresponding to the final position of the spacecraft we can write :ab
c

 = [R(u, θ)]× [R(v, ϕ)]× [R(w,ψ)]×

AB
C

.

Knowing u, v, w, θ, ϕ, ψ we can calculate R

θ and ϕ can be calculated directly knowing A and A”: If the spherical coordinates of A are R,0,0, the
spherical coordinates of A” are R,θ,ϕ. (The spherical frame must be oriented in the same way as the
planes principal axis).

u⃗ direction corresponds to the Z axis, u⃗ = 0,0,1.

v⃗ corresponds to the direction of the cross product of (OA’) and (Z).

w⃗ corresponds to the direction of (OA”).

ψ can be calculated from the new normal vector and A”, B”. Left as an exercice to the reader.

Page 10 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

=====

Another solution, let the plane of the triangle ABC be P ,
−→
A = OA, and

−→
M be the cross product

−→
A ×

−→
N .

Then by definition of the cross product,
−→
M is perpendicular on both vectors. Since that

−→
N is perpendicular

on the plane P ,
−→
M is perpendicular on

−→
N , and

−→
M is co-planar with

−→
A , then the vector

−→
M exists in the

plane P .

Let D be the point of intersection of the two lines
−→
M and AB. Since that

−→
A is perpendicular on

−→
M , then

the length of OD can easily be calculated, since AOD is a right-angle triangle, where the angle OAD is the
same as OAB, which is π

6 . Using simple trigonometry, the formula can be obtained as |
−→
D | = |

−→
A | tan(π6).

The vector
−→
M can then be scaled by |

−→
D |
|
−→
M |

to obtain
−→
D . Finally, in order to obtain the point B, we then

scale the vector
−−→
AD to be

−−→
AB. Without loss of generality, this can be repeated using −

−→
M to obtain the

point C. In short,

B =
1

2
(
N ×A

|N |
√
3−A), C =

1

2
(
A×N

|N |
√
3−A)

Problem Tutorial: “Khoshaf”
First of all, let’s see when the sum of elements in some interval [L,R] become divisible, by 3. This happens
when the accumulative sum of elements in the range [0, R] mod 3 is the same as the accumulative sum
of elements in range [0, L − 1] mod 3. Because the subtraction of both accumulative sums will then be
equal to 0 mod 3. The other case is when an accumulative sum is divisible by 3.

After stating this fact our problem now is reduced to the following: In how many ways we can fill an array
with numbers from the given range so that the array has X prefixes with accumulative sum mod 3 equals
2, Y prefixes with accumulative sum mod 3 equals 1 and Z prefixes with accumulative sum mod 3 equals
0, so that the total number of pairs of prefixes with the same value is exactly K−Z (we subtracted Z here
because any prefix with value 0 adds 1 to the number of intervals divisible by 3 without the need to pair
up with another prefix). At this point a simple dynamic programming solution can be used as follows:

dp[x][y][z][idx][k][r] = the answer to the problem if you already filled the first idx cells of the array and
so far you constructed x prefixes with value 2, y prefixes with value 1 and z prefixes with value 0, and
the remaining value of K is k and the current accumulative sum mod 3 is r.

The only problem with the above solution is that there is no way you can create the above dp table with
given constraints. On the first look, you need to create a table with dimensions [104][104][104][104][104][3]
which is very huge. Let’s not give up and try to analyze our dp more. First of all, do we really need
to keep idx in the state? the answer is of course ‘No’ because you always can get the value of this
parameter form the sum of x + y + z. Great we droped one dimension and we still can drop another
one, which is ‘k’ because the value of k can also obtained from x, y, and z using a pretty simple formula
k = K − [x · (x− 1) + y · (y − 1) + z · (z + 1)]/2. Now our dimensions are [x][y][z][3] = [104][104][104][3].
Now the final optimization, does the value of these parameters need to grow up to N(104)? No, because
as we said if we have c prefixes with the same value they will add c · (c − 1)/2 intervals divisible by 3.
so the value of any of these parameters don’t have to be greater than O(

√
K), so you can calculate the

exact maximum value of them or use some approximate upper bound, for example 150 is a very good
upper bound (since 150 · 149/2 ≥ 1.1 · 104 ≥ N) and thus our dimensions are now [150][150][150][3] which
is enough to pass. In this solution, however, one needs to take care of the constant operations, using the
remainder % operation or division more than necessary might make a huge factor and thus cause TLE.

Thus the final dp formula is given by:

dp[x][y][z][r] =

1 if x+ y + z = N, [x · (x− 1) + y · (y − 1) + z · (z + 1)]/2 = K

0 if x+ y + z = N, [x · (x− 1) + y · (y − 1) + z · (z + 1)]/2 ̸= K

0 if [x · (x− 1) + y · (y − 1) + z · (z + 1)]/2 > K

Page 11 of 12

International Collegiate Programming Contest, Arab Collegiate Programming Contest (2018)
Sharm El-Sheikh, 2018

Otherwise,

dp[x][y][z][r] =

2∑
w=0

dp[x+1(w = 2)][y+1(w = 1)][z+1(w = 0)][(r+w) mod 3]·(count(w,R)−count(w,L−1))

where count(w,X) = ⌈max(0, X −w+1)/3⌉ = ⌊(max(0, X −w+1)+ 2)/3⌋ counts the possible numbers
that are equal to w mod 3 and ≤ X. Additionally, the notation 1(P) is equal to 1 if P is true, and 0
otherwise.

Problem Tutorial: “Looking for Taste”
The key idea to solving this problem is noticing thatK ≥ 20 and Ai ≤ 106 < 220. The following constraints
mean that each number can be represented with at most 20 bits and that we can always pick at least 20
numbers.

Let’s enumerate all bits from 1 to 20, for each one, let’s pick any arbitrary element that has the ith bit set
to 1. Since we can always pick 20 elements, it will always be possible to do so for ith bit if there exists an
element with it turned on. This means we can always have the ith bit set to 1 if and only if there exists
an element with the ith bit set to 1. Therefore, we can just bitwise-OR all the numbers and be done!

Page 12 of 12

